Review badges
0 pre-pub reviews
0 post-pub reviews
Abstract

OBJECTIVES: To observe the protective effects of dexmedetomidine (Dex) postconditioning on myocardial ischemia/reperfusion injury (IRI) and to explore its potential molecular mechanisms.METHODS: One-hundred forty-seven male Sprague-Dawley rats were randomly divided into five groups receiving the different treatments: Sham, ischemia/reperfusion (I/R), Dex, Brusatol, Dex + Brusatol. By the in vivo rat model of myocardial IRI, cardioprotective effects of Dex postconditioning were evaluated by assessing serum CK-MB and cTnI levels, myocardial HE and Tunel staining and infarct size. Furthermore, the oxidative stress-related markers including intracellular ROS level, myocardial tissue MDA level, SOD and GSH-PX activities were determined.RESULTS: Dex postconditioning significantly alleviated myocardial IRI, decreased intracellular ROS and myocardial tissue MDA level, increased SOD and GSH-PX activities. Dex postconditioning significantly up-regulated myocardial expression of Bcl-2, down-regulated Bax and cleaved caspase-3 and decreased cardiomyocyte apoptosis rate. furthermores, Dex postconditioning promoted Nrf2 nuclear translocation, increased myocardial expression of Sirt3 and SOD2 and decreased Ac-SOD2. However, brusatol reversed cardioprotective benefits of Dex postconditioning, significantly decreased Dex-induced Nrf2 nuclear translocation and reduced myocardial expression of Sirt3 and SOD2.CONCLUSIONS: Dex postconditioning can alleviate myocardial IRI by suppressing oxidative stress and apoptosis, and these beneficial effects are at least partly mediated by activating the Nrf2/Sirt3/SOD2 signaling pathway.

Authors

Hu, Bin;  Tian, Tian;  Li, Xin-Tao;  Hao, Pei-Pei;  Liu, Wei-Chao;  Chen, Ying-Gui;  Jiang, Tian-Yu;  Chen, Pei-Shan;  Cheng, Yi;  Xue, Fu-Shan

Publons users who've claimed - I am an author

No Publons users have claimed this paper.