Review badges
0 pre-pub reviews
0 post-pub reviews
Abstract

The emergence of next-generation spintronic and spin-photonic technologies will be aided by the development of materials showing strongly coupled magnetic, electronic, and optical properties. Through a combination of magneto-photoluminescence and magnetic circular dichroism spectroscopies we demonstrate strong magneto-optical responses from CsEuCl3 perovskite nanocrystals and thin films in the near-UV/visible region, stemming from the f-d transitions centered at the B-site Eu2+ cations. We show that this material undergoes a ferromagnetic phase transition at 3 K in both the nanocrystal and thin-film samples, resulting in complete spin alignment and indicating intrinsic ferromagnetism. We also report the observation of spin-polarized photoluminescence in the presence of a magnetic field at cryogenic temperatures, saturating with a large polarization ratio (DeltaI/I = (IL - IR)/(IL + IR)) of nearly 30% at modest magnetic fields (2 T). These results highlight CsEuCl3 as an intrinsically ferromagnetic, luminescent metal-halide perovskite with potentially interesting implications for future spin-based technologies using perovskites.

Authors

Walsh, Kelly M;  Pressler, Kimo;  Crane, Matthew J;  Gamelin, Daniel R

Publons users who've claimed - I am an author

No Publons users have claimed this paper.