Review badges
0 pre-pub reviews
0 post-pub reviews
Abstract

Our recent studies demonstrate that the focal adhesion protein Kindlin-2 is critical for chondrogenesis and early skeletal development. Here, we show that deleting Kindlin-2 from osteoblasts using the 2.3-kb mouse Col1a1-Cre transgene minimally impacts bone mass in mice, but deleting Kindlin-2 using the 10-kb mouse Dmp1-Cre transgene, which targets osteocytes and mature osteoblasts, results in striking osteopenia in mice. Kindlin-2 loss reduces the osteoblastic population but increases the osteoclastic and adipocytic populations in the bone microenvironment. Kindlin-2 loss upregulates sclerostin in osteocytes, downregulates beta-catenin in osteoblasts, and inhibits osteoblast formation and differentiation in vitro and in vivo. Upregulation of beta-catenin in the mutant cells reverses the osteopenia induced by Kindlin-2 deficiency. Kindlin-2 loss additionally increases the expression of RANKL in osteocytes and increases osteoclast formation and bone resorption. Kindlin-2 deletion in osteocytes promotes osteoclast formation in osteocyte/bone marrow monocyte cocultures, which is significantly blocked by an anti-RANKL-neutralizing antibody. Finally, Kindlin-2 loss increases osteocyte apoptosis and impairs osteocyte spreading and dendrite formation. Thus, we demonstrate an important role of Kindlin-2 in the regulation of bone homeostasis and provide a potential target for the treatment of metabolic bone diseases.

Authors

Cao, Huiling;  Yan, Qinnan;  Wang, Dong;  Lai, Yumei;  Zhou, Bo;  Zhang, Qi;  Jin, Wenfei;  Lin, Simin;  Lei, Yiming;  Ma, Liting;  Guo, Yuxi;  Wang, Yishu;  Wang, Yilin;  Bai, Xiaochun;  Liu, Chuanju;  Feng, Jian Q.;  Wu, Chuanyue;  Chen, Di;  Cao, Xu;  Xiao, Guozhi

Publons users who've claimed - I am an author
Contributors on Publons
  • 6 authors