Review badges
0 pre-pub reviews
0 post-pub reviews

Background: Growth factors and their receptor tyrosine kinases play pivotal roles in development, normal physiology, and pathology. Signal transduction is regulated primarily by receptor endocytosis and degradation in lysosomes ("receptor downregulation"). c-Cbl is an adaptor that modulates this process by recruiting binding partners, such as ubiquitin-conjugating enzymes. The role of another group of adaptors, Sprouty proteins, is less understood; although, studies in insects implicated the founder protein in the negative regulation of several receptor tyrosine kinases.Results: By utilizing transfection of living cells, as well as reconstituted in vitro systems, We identified a dual regulatory mechanism that combines human Sprouty2 and c-Cbl. Upon activation of the receptor for the epidermal growth factor (EGFR), Sprouty2 undergoes phosphorylation at a conserved tyrosine that recruits the Src homology 2 domain of c-Cbl. Subsequently, the flanking RING finger of c-CbI mediates poly-ubiquitination of Sprouty2, which is followed by proteasomal degradation. Because phosphorylated. Sprouty2 sequesters active c-Cbl molecules, it impedes receptor ubiquitination, downregulation, and degradation in lysosomes. This competitive interplay occurs in endosomes, and it regulates the amplitude and longevity of intracellular signals.Conclusions: Sprouty2 emerges as an inducible antagonist of c-Cbl, and together they set a time window for receptor activation. When incorporated in signaling networks, the coupling of positive (Sprouty) to negative (Cbl) feedback loops can greatly enhance output diversification.


Rubin, C;  Litvak, V;  Medvedovsky, H;  Zwang, Y;  Lev, S;  Yarden, Y

Publons users who've claimed - I am an author
Contributors on Publons
  • 3 authors