Review badges
0 pre-pub reviews
1 post-pub reviews

A detailed understanding of the thermal damage and failure mechanical behavior of granite at elevated temperatures is a key concern in nuclear waste disposal engineering, underground coal gasification, and heat mining in enhanced geothermal energy. In this research, uniaxial compression tests were first carried out to evaluate the effect of high temperature treatments (200, 300, 400, 500, 600, 700 and 800 degrees C) on the crack damage, strength and deformation failure behavior of a granite. The results demonstrated that, in all cases, the crack damage threshold, the strength and static elastic modulus of granite were increased at 300 degrees C, before decreasing up to our maximum temperature of 800 degrees C. However, the static Poisson's ratio of granite first decreased at 600 degrees C, and then increased rapidly with the temperature. The crack damage and peak axial strain always showed an increase when the temperature was increased. However, the dynamic elastic modulus decreased with the temperature, whereas the dynamic Poisson's ratio did not depend on the temperature. The gradual increase of temperature results in a more ductile failure of granite. Next, the thermal damage mechanism of uncompressed granite was analyzed by optical microscopic observation. At T = 25-300 degrees C, the mechanisms were favored by the thermal expansion of mineral grains but no microcracks were observed; at T = 400-600 degrees C, the mechanisms were contributed by boundary cracks and transgranular cracks in feldspar and quartz grains; and at T = 700-800 degrees C, the mechanisms were associated with the coalescence of boundary cracks and transgranular cracks. The internal crack evolution process was then monitored during deformation using acoustic emission (AE) monitoring. The results showed that the cracking process of granite depended on the heat treatment temperature. Finally, the deformation mechanism of failed granite at various temperatures was analyzed using X-ray micro CT. During loading, the uniaxial compression stress direction dominated the more brittle fracture process of granite at T = 25-600 degrees C, which led to splitting tensile main cracks induced along the axial stress, and thermal damage determined the larger ductile fracture process of granite at T = 700-800 degrees C, which resulted in a more ductile deformation after the peak strength. (C) 2016 Elsevier Ltd. All rights reserved.


Yang, Sheng-Qi;  Ranjith, P. G.;  Jing, Hong-Wen;  Tian, Wen-Ling;  Ju, Yang

Publons users who've claimed - I am an author
Contributors on Publons
  • 2 authors
  • 1 reviewer
Followers on Publons
Publons score (from 1 score)
Web of Science Core Collection Citations
  • Abstract, title and references ● Is the aim clear? Yes ● Is it clear what the study found and how they did it? Yes ● Is the title informative and relevant? Yes ● Are the references: ● Relevant? Yes ● Recent? Yes ● Referenced correctly? Yes ● Are appropriate key studies included? Yes Introduction/ background ● Is it clear what is already known about this topic? Yes ● Is the research question clearly outlined? Yes ● Is the research question justified given what is already known about the topic? Yes Methods ● Is the process of subject selection clear? Yes ● Are the variables defined and measured appropriately? Yes ● Are the study methods valid and reliable? To some Extent ● Is there enough detail in order to replicate the study? Yes Results ● Is the data presented in an appropriate way? Yes ● Tables and figures relevant and clearly presented? Yes ● Appropriate units, rounding, and number of decimals? Yes ● Titles, columns, and rows labelled correctly and clearly? Yes ● Categories grouped appropriately? Yes ● Does the text in the results add to the data or is it repetitive? repetitive ● Are you clear about what is a statistically significant result? Yes ● Are you clear about what is a practically meaningful result? Yes Discussion and Conclusions ● Are the results discussed from multiple angles and placed into context without being over interpreted? Yes ● Do the conclusions answer the aims of the study? To some extent ● Are the conclusions supported by references or results? Yes ● Are the limitations of the study fatal or are they opportunities to inform future research? Needs Future Research.

    Published in
    Ongoing discussion
All peer review content displayed here is covered by a Creative Commons CC BY 4.0 license.